KAT: a K-mer analysis toolkit to quality control NGS datasets and genome assemblies

نویسندگان

  • Daniel Mapleson
  • Gonzalo Garcia Accinelli
  • George Kettleborough
  • Jonathan Wright
  • Bernardo J. Clavijo
چکیده

Motivation De novo assembly of whole genome shotgun (WGS) next-generation sequencing (NGS) data benefits from high-quality input with high coverage. However, in practice, determining the quality and quantity of useful reads quickly and in a reference-free manner is not trivial. Gaining a better understanding of the WGS data, and how that data is utilized by assemblers, provides useful insights that can inform the assembly process and result in better assemblies. Results We present the K-mer Analysis Toolkit (KAT): a multi-purpose software toolkit for reference-free quality control (QC) of WGS reads and de novo genome assemblies, primarily via their k-mer frequencies and GC composition. KAT enables users to assess levels of errors, bias and contamination at various stages of the assembly process. In this paper we highlight KAT's ability to provide valuable insights into assembly composition and quality of genome assemblies through pairwise comparison of k-mers present in both input reads and the assemblies. Availability and Implementation KAT is available under the GPLv3 license at: https://github.com/TGAC/KAT . Contact [email protected]. Supplementary information Supplementary data are available at Bioinformatics online.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NGS QC Toolkit: A Toolkit for Quality Control of Next Generation Sequencing Data

Next generation sequencing (NGS) technologies provide a high-throughput means to generate large amount of sequence data. However, quality control (QC) of sequence data generated from these technologies is extremely important for meaningful downstream analysis. Further, highly efficient and fast processing tools are required to handle the large volume of datasets. Here, we have developed an appl...

متن کامل

Genome analysis stringMLST: a fast k-mer based tool for multilocus sequence typing

Rapid and accurate identification of the sequence type (ST) of bacterial pathogens is critical for epidemiological surveillance and outbreak control. Cheaper and faster next-generation sequencing (NGS) technologies have taken preference over the traditional method of amplicon sequencing for multilocus sequence typing (MLST). But data generated by NGS platforms necessitate quality control, genom...

متن کامل

Quality control of next-generation sequencing data without a reference

Next-generation sequencing (NGS) technologies have dramatically expanded the breadth of genomics. Genome-scale data, once restricted to a small number of biomedical model organisms, can now be generated for virtually any species at remarkable speed and low cost. Yet non-model organisms often lack a suitable reference to map sequence reads against, making alignment-based quality control (QC) of ...

متن کامل

stringMLST: a fast k-mer based tool for multilocus sequence typing

Rapid and accurate identification of the sequence type (ST) of bacterial pathogens is critical for epidemiological surveillance and outbreak control. Cheaper and faster next-generation sequencing (NGS) technologies have taken preference over the traditional method of amplicon sequencing for multilocus sequence typing (MLST). But data generated by NGS platforms necessitate quality control, genom...

متن کامل

SEQuel: improving the accuracy of genome assemblies

MOTIVATION Assemblies of next-generation sequencing (NGS) data, although accurate, still contain a substantial number of errors that need to be corrected after the assembly process. We develop SEQuel, a tool that corrects errors (i.e. insertions, deletions and substitution errors) in the assembled contigs. Fundamental to the algorithm behind SEQuel is the positional de Bruijn graph, a graph str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2017